FPGA Implementation of a PID Controller with DC Motor Application

By
Paul Leisher
and
Christopher Meyers

Outline

• Overview and Top-Down Design
• Previous Patents and Standards
• Functional Description
• I/O of Subsystems
• Quantitative Specifications
• Preliminary Lab Work
• Equipment Needed
• Division of Labor
Introduction

- Implementation of a controller in an existing DC motor system
- Minimize cost
- Overcome non-linearity of DC motor
- DC motor speed variations

Top-Down Design

- Speed Command Signal
- Digital PID Controller
- PWM System
- DC Motor System
- Frequency to Digital
- Motor Shaft Velocity
Outline

- Overview and Top-Down Design
- Previous Patents and Standards
- Functional Description
- I/O of Subsystems
- Quantitative Specifications
- Preliminary Lab Work
- Equipment Needed
- Division of Labor

Previous Work

- Brett Marshall – 2000/2001 Senior Project
Outline

- Overview and Top-Down Design
- Previous Patents and Standards
- **Functional Description**
- I/O of Subsystems
- Quantitative Specifications
- Preliminary Lab Work
- Equipment Needed
- Division of Labor

System Inputs and Outputs

Inputs

- Speed Command Signal

Outputs

- Motor Shaft Velocity
- System Display
Modes of Operation

- Full Speed
- Off
- 0 to 800 RPM via user

Outline

- Overview and Top-Down Design
- Previous Patents and Standards
- Functional Description
 - I/O of Subsystems
- Quantitative Specifications
- Preliminary Lab Work
- Equipment Needed
- Division of Labor
Digital PID Controller

Error Signal \rightarrow Digital PID Controller \rightarrow PWM Command Signal

- Error Signal combination of desired input and motor shaft velocity
- PWM Command Signal computed based on Error signal to ensure linearity

PWM System

PWM Command Signal \rightarrow PWM System \rightarrow PWM Signal

- PWM Command Signal used to create desired percent duty cycled signal
DC Motor System

- PWM Signal used with hardware to control DC Motor System
- Motor Shaft Velocity produced by encoder

Frequency to Digital Converter

- Motor Shaft Velocity sent from encoder on DC motor
- Digital Speed Signal is a digital representation of motor shaft velocity
Outline

• Overview and Top-Down Design
• Previous Patents and Standards
• Functional Description
• I/O of Subsystems
• Quantitative Specifications
• Preliminary Lab Work
• Equipment Needed
• Division of Labor

Specifications

• Steady State error = 0 for command inputs
• Percent Overshoot = 5%
• Phase Margin > 50 degrees
Outline

• Overview and Top-Down Design
• Previous Patents and Standards
• Functional Description
• I/O of Subsystems
• Quantitative Specifications
 • Preliminary Lab Work
• Equipment Needed
• Division of Labor

Preliminary Lab Work

• DC Motor Modeling
• PWM System Design
• Complete System Block Diagram
• Investigation of non-linear look-up table implemented in block diagram
Complete System Block Diagram

Outline

- Overview and Top-Down Design
- Previous Patents and Standards
- Functional Description
- I/O of Subsystems
- Quantitative Specifications
- Preliminary Lab Work
 - Equipment Needed
- Division of Labor
Equipment for System

- FPGA Development Board
- Personal Laptops

Outline

- Overview and Top-Down Design
- Previous Patents and Standards
- Functional Description
- I/O of Subsystems
- Quantitative Specifications
- Preliminary Lab Work
- Equipment Needed
 - Division of Labor
Division of Labor

• Due to highly theoretical nature of project, most parts will be completed together.

• Possible division of labor:

 Paul Leisher
 • VHDL Framework
 • Test System Method and Development

 Christopher Meyers
 • VHDL PWM Subsystem
 • Reliable Speed Display System