
Auto-Chromatic Instrument Tuner
Electrical Engineering Senior Design Project

Prepared By:

Erin M. Smith

Prepared For:

Dr. James Irwin, Senior Project Faculty Advisor
and

Dr. Winfred Anakwa, Senior Project Laboratory Coordinator
Department of Electrical and Computer Engineering and

Technology
Bradley University, Peoria, IL 61625

Prepared On:

February 12, 2001

1

ABSTRACT

The auto-chromatic tuner is an 8031 microprocessor based device which in real time

compares the pitch (note name with accidental) of a tone provided by the user with

standard concert pitches. The tuner accepts an input tone from a musical instrument or

voice, and determines the fundamental frequency of that waveform. The fundamental

frequency is used to index a look-up table of pitches. In manual-tune mode the indexing

is referenced to the pitch, and octave, set by the user while in auto-tune mode the

microprocessor chooses the nearest pitch and octave. A series of LED’s provide

information to the user as to how close the fundamental frequency of the input tone is to

the chosen concert pitch. In the audible reference pitch mode the pitch and octave are

selected by the user and a square wave with this fundamental frequency is played through

a speaker.

2

Table of Contents

I. INTRODUCTION……………………………………………………………3

II. TOP-DOWN DESIGN………………………………………………………3

III. THEORETICAL BACKGROUND AND INVESTIGATION…….8

IV. DESIGN IMPLEMENTATION………………………………………….9

V. DESIGN TESTING…………………………………………………………12

VI. CONCLUSION……………………………………………………………....13

VII. APPENDIX…………………………………………………………………...14

3

I. INTRODUCTION

This project fulfills the Senior Design Project requirement for a Bachelor of

Science degree in Electrical Engineering.

The tuning of musical instruments is important to musicians, whether playing as

individuals or as part of an ensemble. For individuals, it is helpful while practicing to

check the intonation of a note or multiple notes that may be out of tune. Each instrument

has notes that have worse intonation relative to the rest of the notes played, which are

more difficult to tune. Also, in the extreme ranges both high and low, the pitch may vary

more drastically. In ensembles such as band or orchestra, the instrument tuner is

important to tuning the group. An audible reference pitch may be played initially for

tuning, and if the musicians are still out of tune after hearing and attempting to adjust to

the reference pitch, automatic or manual tune modes may be used to tune individuals.

II. TOP-DOWN DESIGN

Top-down design was the method used for this project. This helps make the

project more manageable by requiring the design engineer to look at it as a series of steps

towards the overall goal of completion. A timeline listing various milestones is

developed and used as a guide during the design process. It also aids in preventing

integration problems in the design, avoiding complications in subsequent steps of the

design process. The first step in top-down design is developing a functional description

of the project.

A. Functional Description

A functional description summarizes the basic operation of the system. When

read, the user should have a basic understanding of what the system does. The functional

description consists of the user interface, which can be seen if Figure 1. Table 1 contains

a description of each element of the user interface, as well as a description of the

operating modes.

4

Figure 1: Front Panel Diagram

In Figure 1, the diagram for the front panel can be seen. It consists of an LED

display, pitch and octave up/down buttons, five LED’s, and a power/mode switch. The

LED display shows the note name, quality (whether it is natural or flat), and the octave.

In the figure, the note displayed if E-flat in the 6th octave. The pitch up/down buttons are

used to run through the twelve chromatic pitches ranging from C to B. The octave

up/down buttons are used to move between the eight possible octaves for tuning: zero

through seven. The pitch and octave buttons are utilized in Manual Tune and Audible

Reference Pitch modes only, not in Auto Tune mode. Five LED’s are utilized to provide

digital tuning information. In Auto Tune mode, the red LED’s on the far left and far right

indicate a pitch that is 15-50 cents out of tune. In Manual and Audible Reference Pitch

modes, the red LED’s represent a pitch which is greater than 15 cents out of tune, it could

potentially indicate that a note is more than 50 cents out of range. The Power/Mode

switch simply indicates if the tuner if Off or in one of the three modes: Auto Tune,

Manual Tune, or Audible Reference Pitch mode.

5

Input Description
Microphone (Not shown) Converts the audio signal of the played pitch

into an electrical signal.
Power/Mode Switch A four position rotary switch selects one of four modes,

Off, Auto Tune, Manual Tune, and Audible Reference
Pitch.

Pitch Selector Pitch and Octave Up/Down pushbuttons select the pitch
(C to B, chromatically) and octave (0 to 8) to be played in
Audible Reference Pitch mode, or selects the tuning pitch
in Manual Tune mode.

Output Description
Pitch Indicator A three character seven segment display which indicates

the pitch that the device detects in Auto Tune mode, or
which indicates the selected pitch in Manual Tune and
Audible Reference Pitch modes. The pitch is displayed in
octave designation form (i.e. E4, Bb2), where the first two
characters are the pitch class (letter name followed by a b
for flat), and the last character is the octave.

Digital Tuning Indicator A set of 5 LED’s to indicate fine tuning. A center green
LED indicates the pitch is in tune. The two LED’s around
the center LED are yellow and indicate the played pitch is
less than 10 cents out of tune, but not in tune. The two
outer red LED’s indicate the played pitch is more than 10
cents out of tune. The left red LED of each pair is lit
when the pitch is flat, the right LED is lit when the pitch
is played sharp.

Speaker (Not shown) Produces the selected pitch in Audible
Reference Pitch mode.

Mode Description
Off The power is off. The device consumes no electrical

energy.
Auto Tuning The device finds the closest valid pitch to the played

pitch, then compares the two. The Pitch Indicator
displays the closest valid pitch, and the Digital Tuning
Indicator displays the tonality.

Manual Tuning The user selects the pitch to tune. The device compares
the played pitch to the selected pitch and displays the
tonality with the Digital Tuning Indicator. The selected
pitch is displayed on the Pitch Indicator.

Audible Reference Pitch The user selects the pitch to be played. The Pitch
Indicator displays the selected pitch, and the Speaker
produces the selected pitch

Table 1: Functional Description

6

B. System Level Block Diagram

After creating the functional description, the next step is to develop a hardware

block diagram. The block diagram for this system can be seen in Figure 2. The system

level block diagram shows the general layout for the tuner, showing subsystems. It also

illustrates how all of the subsystems are interconnected. The block diagram clearly

shows the path the signal follows from the input to the output.

Figure 2: System Level Block Diagram

As can be seen in the block diagram, the 8031 microprocessor is central to the

operation of the auto-chromatic instrument tuner. The microprocessor measures the input

and then outputs the correct responses. The signal enters through the microphone and

then goes through input conditioning hardware, including an amplifier, threshold

detector, and Automatic Gain Control. The Timer/Counter then determines the period of

the waveform, and subsequently sends this information to the microprocessor. From this

7

point the microprocessor determines the relative intonation of the waveform by

comparing it to values in the frequency look-up table. Finally, the 8031 microprocessor

will send the corresponding output values from the table to the display hardware. In

order to understand how the software operates, a software flow chart is necessary.

C. Software Flow Chart

Figure 3: Software Flow Chart

Figure 3 shows the basic operation of the software written for the device. First,

the Tuner enters an initialization mode. Next the correct operating mode would be chosen

but since Automatic tuning mode is the only mode which is complete, the device goes

directly to the Auto Tune branch of the code. Then a clock signal is counted to determine

the input signal period. Next, a course of action is taken based on whether the counter

overflows or not. If an overflow occurs the clock input to the counter is too high in

8

frequency. The frequency is lowered in divide-by-two steps until overflow does not

occur. At this time, the count is read and depending upon the specific mode of operation,

manual or automatic, the results are then displayed. The device is then reset to tune the

next note played or enter a different mode. When Audible Reference Pitch is

implemented, this mode will display the appropriate output signal and play it through the

speaker.

III. THEORETICAL BACKGROUND AND INVESTIGATION

A. Musical Pitch to Frequency Equation

Since this project was a continuation from the preceding year, research was already

completed to explain the relationship between the frequencies of notes in a scale. The

frequencies of the pitches in the chromatic scale are related by the equation:

 (f1 / f2) = 2(N/12) [Eq 1]

where f1 and f2 are the frequencies of two pitches in the musical scale and N is the

number of half steps between the pitches. Each pitch in the chromatic scale (containing

all twelve tones) is one half-step away from the neighboring pitches.

Tuning error is calculated in cents, which is one-hundredth of the distance

between neighboring pitches, in logarithmic spacing. Mathematically, this can be

expressed as:

Et = 100*(N/12)*log2 (ft /fr) [Eq 2]

where E is the tuning error in cents, f is the frequency being tuned, f is the frequency of

the reference pitch, and N is the number of half steps from the reference pitch to the pitch

being tuned.

B. Octave Significance

A property of musical signals which proved significant when coming up with the

design for this project was that each octave is related to its adjacent octave by a multiple

of two. Because of this property, the Tuner can scale every octave to the zero octave by

changing the counter clock. This significantly reduces the amount of data that needs to be

stored. (Instead of having a table of values for all of the octaves that can be tuned, only

9

one table of values is needed, which can be used for all octaves when they are divided

down to the appropriate frequency range.) The table contains data which is spaced at five

cent increments, since this was the original design specification. This specification was

chosen by the previous group because the average human ear cannot detect differences of

less than five cents.

IV. DESIGN IMPLEMENTATION

Several goals were added to the project, since the project was a continuation from

a previous year. The major goals were to complete Manual Tune and Auto Tune modes,

expand the digital tuning, and implement Automatic Gain Control. The schematics for

the hardware of the project were not modified, and can be seen in the paper by Robert

Schmanski and Craig Janus, written in 1999.

A. Manual Tune Mode

One goal was to complete the manual tune mode. From the previous year’s

documentation, it seemed as though not much effort was needed to complete manual tune

mode because a portion of the code had already been completed. However, the portion of

code for Manual Tune mode could not be located. After a great deal of looking through

the existing software and learning how it operated, the conclusion was made that an

excessive amount of work needed to be done in order to implement Manual Tuning

mode. In addition, the software for reading the position of the Mode Switch was not

implemented into the body of the final software though it had been demonstrated by itself

at an earlier juncture in time. The decision was made to leave this portion of the project

to future development.

B. Automatic Gain Control

Automatic Gain Control was important to increase the reliability of the threshold

detector. The idea behind Automatic Gain Control is to highly amplify input signals

which are very small, and minimally amplify large amplitude signals. Changing the level

of amplification does not change the frequency, and thus does not effect the tuning

10

measurement. This keeps the voltage levels to the threshold detector more consistant

which reduces false triggering.

A significant portion of time was devoted to determining a good design for

Automatic Gain Control. One of the first designs involved an amplifier circuit with a

varistor in the feedback loop. However, the design did not work as anticipated because a

manufactured varistor could not be found which would work in the appropriate voltage

range. The next design involved a gain circuit with an FET in the feedback loop. The

principle of ACG did not hold in this case either, because all of the input signals

remained small at the output. Finally, an article was located which explained a circuit

which implements AGC using a digital potentiometer. This design can be seen in Figure

4.

Figure 4: AGC circuit using a digital potentiometer

The above circuit works to maintain a constant energy level at the output y(t).

The output y(t) goes into a full-wave rectifier followed by a filter in order to produce an

estimate, E(t), of the signal energy. Next, a subtractor compares this energy signal

against a preselected reference value. The difference causes the control circuit to vary

the amplifier gain, which in turn keeps E(t) close to the value of Ef .

Parts for this particular design were ordered, but did not arrive in a timely manner.

Therefore, the decision was made that the next project group will build and test the above

design.

11

C. Expand Digital Tuning

Due to the fact that the analog portion of the tuner ceased to work during this

portion of the project, another goal was to increase the digital tuning resolution. In order

to do this, the tables contained on the GAL chips needed to be expanded considerably.

The original design was for five LED’s, and the eventual goal is to have seven to nine

digital tuning LED’s, in order to give more detailed tuning information. Time was spent

expanding the tables from five LED’s to nine LED’s, which increased the table sizes by a

factor of 16 (2^4). Although the tables have been expanded, nine LED digital tuning

could not be implemented due to hardware limitations. The next project group will work

to expand the hardware for nine LED’s and implement a bread board design to decrease

the size and wire-wrapping.

D. Auto Tune Mode

Although significant work was done on Auto Tune mode the previous year, it was

not completed. Auto Tune mode only worked with pre-selected octave. Once the user

selected the desired octave in which to tune, the divide-by-two circuit was set accordingly

and the tables could be searched through based on the division to the zero octave, as

explained previously. However, Auto Tune mode did not work without this pre-selected

octave because the overflow interrupt worked was not implemented. In general when the

counter overflow occurred, the divide-by-two circuit needed to be changed and thus a

different octave searched. The original plan, from the previous year’s report, was that the

device would start from the zero octave as a base, and when overflow occurred, the

octave would be incremented and the divide-by-two circuit reset. However, the count

which is measured is related to the period of the waveform, which is the inverse of the

frequency. Due to this fact, the original concept was backwards, it is in fact necessary to

start searching from the highest octave and work down from there. Because the original

process was incorrect, as modifications were made to the software, an overflow was

never occurring, and thus the changes in the code appeared to make no difference. After

much thought and going over the code thoroughly, the error was found. Luckily it did

not require much to correct it. Each time an interrupt occurs due to overflow, the octave

is decremented until an interrupt does not occur, at which point the correct tuning octave

12

has been reached. The count is repeated to verify its value and the tables are searched and

the appropriate tuning information output to the display. This did not cure all problems.

If the next note was in a higher octave the count would be incorrect. The final software

was eventually implemented, which was based on always starting the search over again

from the highest octave. The final version of the software can be seen in the Appendix.

V. DESIGN TESTING

Although much of the work done on this project was research and studying how

to expand it further, design testing was completed for Auto Tune Mode. The tables

remained the same, so the tuning information was known to be correct from thorough

testing by the previous group. However, once software was completed for Auto Tune

mode without the pre-selected octave, many input signals were tested for accuracy. A

Hewlett-Packard function generator was utilized extensively to output various

frequencies and wave shapes through a small speaker. The main trial was to see if the

device was appropriately utilizing the overflow interrupt and thus performing the divide-

by-two function correctly. Once the code was modified several times and this goal was

reached, a variety of input signals were tested in different octaves and with varying

intonations (i.e.-exactly in tune or varying degrees of sharp and flat). Also, a clarinet was

played throughout the range to test how the device worked with an actual musical

instrument. This method of testing proved very successful and was also useful for the

demonstration of the project.

In addition, some testing was completed to determine the most desirable output

waveform and duty cycle for Audible Reference Pitch. Again, a function generator and

speaker were utilized in this test. After trying a variety of duty cycles and wave shapes

(including square, sinusoidal, triangle, and sawtooth), it was determined that a square

wave with a fifty percent duty cycle produces the most desirable sound to use as a

reference pitch. This information will be used when the function generator is designed

for the Audible Reference Pitch mode.

13

VI. CONCLUSION

Auto Tune mode was fully implemented during the course of this project. It was

taken from the point of working with pre-selected octave only, to successfully searching

for both the note and octave. It took a great deal of time to reach this point due to various

setbacks with the device not working as it had the previous year. Research was

completed on Automatic Gain Control, an AGC circuit was found, and parts were

ordered. When the parts become available, the circuit can be built and tested. The

realization was reached that Manual Tune mode was not simply a minor modification of

Auto Tune mode. Implementing Manual Tune mode will involve creating a flow chart to

write the software separate from Auto Tune mode, and eventually integrating the two

together into one piece of software.

14

VII. APPENDIX

Final Software (Test7.a51):

; **
; Erin Smith
; Full system test, auto tune mode only
; EE 452 Senior Project
;
; Register Use:
; R0, R1 - high and low bytes of 16 bit delay loop
; R2, R3 - high and low bytes of measured period
; R4 - table index
; R5 - octave
; R6 - input status
;
; Updated: 10/19/00 by Erin Smith, successful in performing auto-tune
; **

TEST3:

; memory map

STARD EQU 0000h ; address of start of code
HSTART EQU 1B00h ; address of high table
LSTART EQU 1C00h ; address of low table
DIG EQU 1D00h ; address of digital tuning table
PITCH EQU 1E00h ; address of pitch table
INPUT EQU 0E000h ; address of input switches
DBT EQU 0E800h ; address of divide by 2^n chip
SEVSEG EQU 0F000h ; address of 7-seg display

; interrupt vector definitions

X0_vector equ 0003h ; ext 0
X1_vector equ 0013h ; ext 1
T0_vector equ 000Bh ; timer 0
T1_vector equ 001Bh ; timer 1
S0_vector equ 0023h ; serial

; main code base address
 ORG STARD
init: AJMP setup

;**
;
; Interrupt Jump Table
;
;**

 ORG X0_vector ; ext 0 interrupt
extint0: SJMP ext0srv ; service routine
 RETI

15

 ORG T0_vector ; timer 0 interrupt
t0int: SJMP tmr0srv ; service routine
 RETI

 ORG X1_vector ; ext 1 interrupt
extint1: RETI ; disabled

 ORG T1_vector ; timer 1 interrupt
t1int: RETI ; disabled

 ORG S0_vector ; UART interrupt
uartint: RETI ; disabled

;************** end of interrupt jump table *********************

;**
;
; Interrupt Timer 0 Service Routine
;
;**

tmr0srv: CLR TR0 ; stop timer 0
 CLR EX0 ; disable ext int0

; timer 0 overflow has occurred, decrement octave to perform divide by 2
 MOV A, R5 ; get current octave
 DEC A ; decrement the octave

CJNE A, #01h, dow ; see if octave is one
 MOV A, #09h ; if one, reset to octave 9
dow: MOV R5, A ; store appropriate value in R5

; set divide by 2^n chip
 MOV DPTR, #DBT ; address of divide by 2^n
 MOV A, #80h ; clear divide by 2^n chip
 MOVX @DPTR, A
 MOV A, R5
 MOVX @DPTR, A ; set to divide by 2^n

 MOV TL0, #0h ; reset timer
 MOV TH0, #0h

 SETB ET0 ; enable timer 0 ovrflw int
 SETB EX0 ; enable ext int0
 SETB TR0 ; start timer 0
 RETI

;**
;
; External Interrupt 0 Service Routine
;
;**

ext0srv: CLR TR0 ; stop timer 0
 MOV R2, TL0 ; get low byte of period
 MOV R3, TH0 ; get high byte of period

16

 MOV TL0, #0h ; reset timer
 MOV TH0, #0h
 CALL lookup
 SETB TR0 ; start timer 0

RETI

;**
;
; Main Program
;
;**

;general 8051 initialization
setup: MOV SP, #70h ; initalize stack pointer
 MOV R0, #7Fh ; clear 1st 128 bytes
clr_ram: MOV @R0, #0h ; of internal RAM
 DJNZ R0, clr_ram

;user interface initialization
 MOV DPTR, #INPUT ; set address for inputs
 MOVX @DPTR, A ; clear button ffs
 MOV P1, #0h ; clear dig. tune LEDs

 MOV R5, #09h ; set to 8th octave
 CALL dbtset ; set divide by 2^n

;timer and interrupt initialization
 MOV TMOD, #09h ; set timer mode
 SETB IT0 ; set edge triggered int
 CLR TR0 ; stop timer 0
 MOV TH0, #0h ; start count at zero
 MOV TL0, #0h

 SETB ET0 ; enable timer 0 ovrflw int
 SETB EX0 ; enable ext int 0

 CLR A

 SETB EA ; Enable interrupt system

 SETB TR0 ; start timer 0

 SETB P3.2 ; activate exint0

main:
; CALL delay ; button repeat delay
 SJMP main ; wait for interrupt

;end previously

;**
;
; Table lookup and output routines
;

17

;**

lookup:
 MOV R4, #0h ; clearing table index
 MOV DPTR, #HSTART ; starting at high byte table
 MOV A, R4 ; load table index

HILOOP: MOVC A, @A+DPTR ; load high byte from table
 CLR C ; erase borrow
 SUBB A, R3 ; if R3 > A, carry set
 JC AFTER ; then you're done with high byte
 JZ AFTER ; if equal, go on as well
 INC R4 ; if not, inc table index
 MOV A, R4 ; load table index
 CJNE A, #240d, HILOOP
 ; do another iteration
 RET
AFTER:
 INC DPH ; goto low table
LOWLOOP:
 MOV A, R4 ; load table index
 MOVC A, @A+DPTR ; load low byte from table
 CLR C ; erase borrow
 SUBB A, R2 ; if R2 > A, carry set
 JC AFTER2 ; then you're done with low byte
 JZ AFTER2 ; if equal, go on as well
 DEC DPH ; switch to high byte table
 MOV A, R4 ; loading high byte to compare later
 MOVC A, @A+DPTR
 MOV 30h, A ; store in internal RAM
 INC R4 ; inc table index
 MOV A, R4
 CJNE A, #240d, NEXT
 ; check if outside table
 RET ; if so, return from routine
NEXT: ; else continue with compare
 MOVC A, @A+DPTR ; get next high byte from table
 CJNE A, 30h, AFTER2 ; compare two high bytes
 INC DPH ; return to low byte table
 AJMP LOWLOOP ; do another iteration

AFTER2:
 CALL DIGTUNE
lookup_end:
 RET

;***
; At this point (just after AFTER2) the index, or the place of the
; breakpoint found is stored in R4. We will then use the number in
; R4 to tell us where to look in all of our succeeding tables,
; such as the DAC or the pitch indicator, and so on this next part
; we will be using these tables to find the corresponding outputs.
;**

; The Digital Tuning Meter will be configured as follows:

18

; The left red light will be lit with bit four (16), the left
; yellow light will be lit with bit three (8), the green light
; will be lit with bit two (4), the right yellow light will be
; lit with bit one (2), and the left red light will be lit with
; bit zero (1). Remember, R4 still holds the correct place in
; the table.

DIGTUNE:
 MOV DPTR, #DIG ; load start of dig table to dptr
 MOV A, R4 ; moving the count to A
 MOVC A, @A+DPTR ; loading the correct digital tuning
 ; output
 MOV P1, A ; writing the acc value to port 1
 ; fall through to PITIND

; We have decided to use bits 4-7 to represent the octave and
; bits 0-3 to represent pitch

PITIND:
 MOV DPTR, #PITCH ; load start of pitch table to dptr
 MOV A, R4 ; loading table index
 MOVC A, @A+DPTR ; loading pitch
 MOV R0, A ; store pitch
 MOV A, R5 ; load octave

DEC A ; to normalize
 SWAP A
 ORL A, R0 ; creating 8-bit octave/pitch value
 MOV DPTR, #SEVSEG ; destination address
 MOVX @DPTR, A ; sending info to displays

MOV A, #09h ; after pitch successfully matched,
MOV R5, A ; reset octave to 9 for next search

; set divide by 2^n chip back to divide by 2^9
 MOV DPTR, #DBT ; address of divide by 2^n

 MOV A, #80h ; clear divide by 2^n chip
 MOVX @DPTR, A

 MOV A, R5
 MOVX @DPTR, A ; reset to divide by 2^9

 RET

dbtset:
 MOV DPTR, #DBT ; address of divide by 2^n
 MOV A, #80h ; clear divide by 2^n chip
 MOVX @DPTR, A
 MOV A, R5
 MOVX @DPTR, A ; set to divide by 2^n
 RET

; ***
;
; delay - 2 level cascaded delay routine
;
; Uses:
; R0, R1
;

19

; ***

delay:
 MOV R0, #0FFh ; initialize delay counter 1
loopB: MOV R1, #0FFh ; " " 2
loopA: NOP
 DJNZ R1, loopA
 DJNZ R0, loopB
 RET

; Table of high byte values

ORG HSTART

DB 245d, 244d, 244d, 243d, 242d, 242d, 241d, 240d, 239d, 239d
DB 238d, 237d, 237d, 236d, 235d, 235d, 234d, 233d, 233d, 232d
DB 231d, 231d, 230d, 229d, 229d, 228d, 227d, 227d, 226d, 225d
DB 225d, 224d, 223d, 223d, 222d, 221d, 221d, 220d, 220d, 219d
DB 218d, 218d, 217d, 216d, 216d, 215d, 214d, 214d, 213d, 213d
DB 212d, 211d, 211d, 210d, 210d, 209d, 208d, 208d, 207d, 207d
DB 206d, 205d, 205d, 204d, 204d, 203d, 202d, 202d, 201d, 201d
DB 200d, 200d, 199d, 198d, 198d, 197d, 197d, 196d, 196d, 195d
DB 194d, 194d, 193d, 193d, 192d, 192d, 191d, 190d, 190d, 189d
DB 189d, 188d, 188d, 187d, 187d, 186d, 186d, 185d, 185d, 184d
DB 183d, 183d, 182d, 182d, 181d, 181d, 180d, 180d, 179d, 179d
DB 178d, 178d, 177d, 177d, 176d, 176d, 175d, 175d, 174d, 174d
DB 173d, 173d, 172d, 172d, 171d, 171d, 170d, 170d, 169d, 169d
DB 168d, 168d, 167d, 167d, 166d, 166d, 165d, 165d, 164d, 164d
DB 163d, 163d, 162d, 162d, 161d, 161d, 161d, 160d, 160d, 159d
DB 159d, 158d, 158d, 157d, 157d, 156d, 156d, 156d, 155d, 155d
DB 154d, 154d, 153d, 153d, 152d, 152d, 152d, 151d, 151d, 150d
DB 150d, 149d, 149d, 148d, 148d, 148d, 147d, 147d, 146d, 146d
DB 145d, 145d, 145d, 144d, 144d, 143d, 143d, 143d, 142d, 142d
DB 141d, 141d, 141d, 140d, 140d, 139d, 139d, 139d, 138d, 138d
DB 137d, 137d, 137d, 136d, 136d, 135d, 135d, 135d, 134d, 134d
DB 133d, 133d, 133d, 132d, 132d, 131d, 131d, 131d, 130d, 130d
DB 130d, 129d, 129d, 128d, 128d, 128d, 127d, 127d, 127d, 126d
DB 126d, 126d, 125d, 125d, 124d, 124d, 124d, 123d, 123d, 123d

; Table of low byte values

ORG LSTART

DB 137d, 212d, 31d, 107d, 183d, 4d, 81d, 159d, 238d, 60d
DB 140d, 220d, 44d, 125d, 206d, 32d, 115d, 198d, 25d, 109d
DB 193d, 22d, 108d, 194d, 24d, 111d, 198d, 30d, 118d, 207d
DB 40d, 130d, 220d, 55d, 146d, 238d, 74d, 167d, 4d, 97d
DB 191d, 30d, 125d, 220d, 60d, 157d, 253d, 95d, 192d, 35d
DB 133d, 232d, 76d, 176d, 20d, 121d, 223d, 68d, 171d, 17d
DB 120d, 224d, 72d, 176d, 25d, 131d, 236d, 87d, 193d, 44d
DB 152d, 4d, 112d, 221d, 74d, 184d, 38d, 148d, 3d, 114d
DB 226d, 82d, 195d, 51d, 165d, 23d, 137d, 251d, 110d, 226d
DB 86d, 202d, 62d, 179d, 41d, 159d, 21d, 140d, 3d, 122d
DB 242d, 106d, 227d, 92d, 213d, 79d, 201d, 67d, 190d, 58d

20

DB 181d, 49d, 174d, 43d, 168d, 37d, 163d, 34d, 160d, 31d
DB 159d, 31d, 159d, 31d, 160d, 34d, 163d, 37d, 168d, 42d
DB 173d, 49d, 181d, 57d, 190d, 66d, 200d, 77d, 211d, 90d
DB 224d, 103d, 239d, 118d, 254d, 135d, 15d, 153d, 34d, 172d
DB 54d, 192d, 75d, 214d, 98d, 238d, 122d, 6d, 147d, 32d
DB 174d, 59d, 202d, 88d, 231d, 118d, 5d, 149d, 37d, 182d
DB 70d, 215d, 105d, 250d, 140d, 31d, 177d, 68d, 216d, 107d
DB 255d, 147d, 40d, 189d, 82d, 231d, 125d, 19d, 170d, 64d
DB 215d, 110d, 6d, 158d, 54d, 207d, 103d, 0d, 154d, 51d
DB 205d, 104d, 2d, 157d, 56d, 212d, 111d, 11d, 168d, 68d
DB 225d, 126d, 28d, 186d, 88d, 246d, 148d, 51d, 210d, 114d
DB 17d, 177d, 82d, 242d, 147d, 52d, 213d, 119d, 25d, 187d
DB 94d, 0d, 163d, 70d, 234d, 142d, 50d, 214d, 123d, 32d

; Digital tuning table

ORG DIG

DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 16d, 16d, 16d, 16d, 16d, 16d, 16d, 16d, 8d, 8d
DB 4d, 2d, 2d, 1d, 1d, 1d, 1d, 1d, 1d, 1d

; Table of pitch codes

ORG PITCH

DB 0d, 0d, 0d, 0d, 0d, 0d, 0d, 0d, 0d, 0d
DB 0d, 0d, 0d, 0d, 0d, 0d, 0d, 0d, 0d, 0d
DB 1d, 1d, 1d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 1d, 1d, 1d, 1d, 1d, 1d, 1d, 1d, 1d, 1d
DB 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d
DB 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d
DB 3d, 3d, 3d, 3d, 3d, 3d, 3d, 3d, 3d, 3d
DB 3d, 3d, 3d, 3d, 3d, 3d, 3d, 3d, 3d, 3d
DB 4d, 4d, 4d, 4d, 4d, 4d, 4d, 4d, 4d, 4d

21

DB 4d, 4d, 4d, 4d, 4d, 4d, 4d, 4d, 4d, 4d
DB 5d, 5d, 5d, 5d, 5d, 5d, 5d, 5d, 5d, 5d
DB 5d, 5d, 5d, 5d, 5d, 5d, 5d, 5d, 5d, 5d
DB 6d, 6d, 6d, 6d, 6d, 6d, 6d, 6d, 6d, 6d
DB 6d, 6d, 6d, 6d, 6d, 6d, 6d, 6d, 6d, 6d
DB 7d, 7d, 7d, 7d, 7d, 7d, 7d, 7d, 7d, 7d
DB 7d, 7d, 7d, 7d, 7d, 7d, 7d, 7d, 7d, 7d
DB 8d, 8d, 8d, 8d, 8d, 8d, 8d, 8d, 8d, 8d
DB 8d, 8d, 8d, 8d, 8d, 8d, 8d, 8d, 8d, 8d
DB 9d, 9d, 9d, 9d, 9d, 9d, 9d, 9d, 9d, 9d
DB 9d, 9d, 9d, 9d, 9d, 9d, 9d, 9d, 9d, 9d
DB 10d, 10d, 10d, 10d, 10d, 10d, 10d, 10d, 10d, 10d
DB 10d, 10d, 10d, 10d, 10d, 10d, 10d, 10d, 10d, 10d
DB 11d, 11d, 11d, 11d, 11d, 11d, 11d, 11d, 11d, 11d
DB 11d, 11d, 11d, 11d, 11d, 11d, 11d, 11d, 11d, 11d

END

