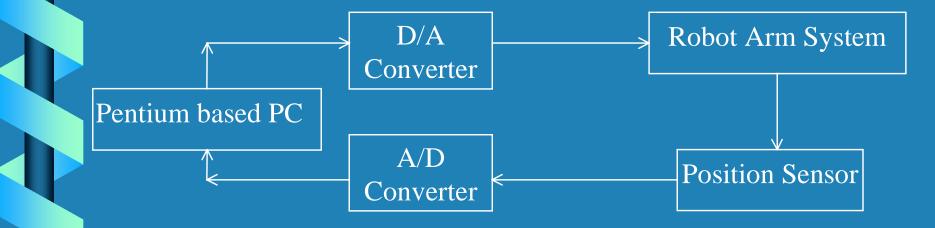
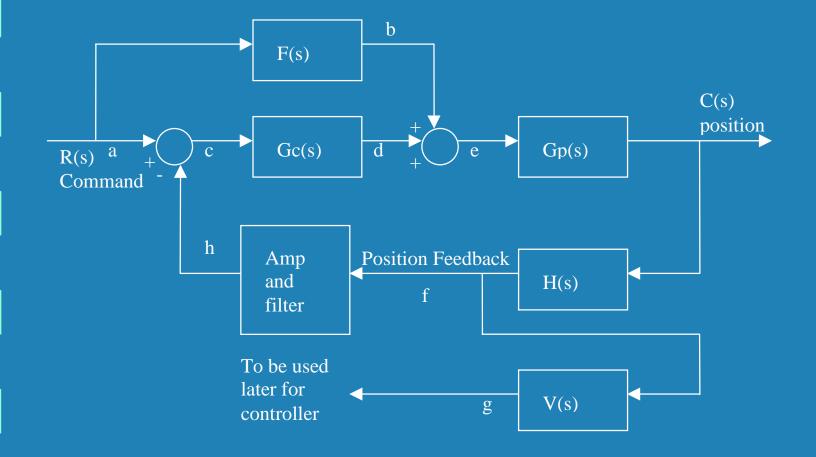
Implementation of Conventional and Neural Controllers Using Position and Velocity Feedback

Progress Report 1

By: Chris Spevacek and Manfred Meissner

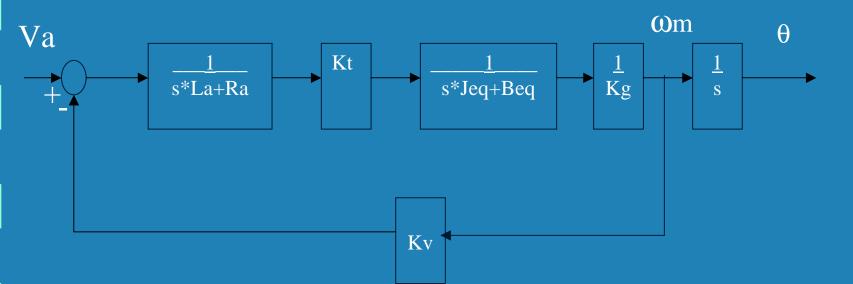

> Advisor: Dr. Gary Dempsey


Summary

Design and Compare Conventional and Neural Controllers for a Small Robot Arm Position and Velocity Feedback Design User Friendly Interface Design

High Level Block Diagram

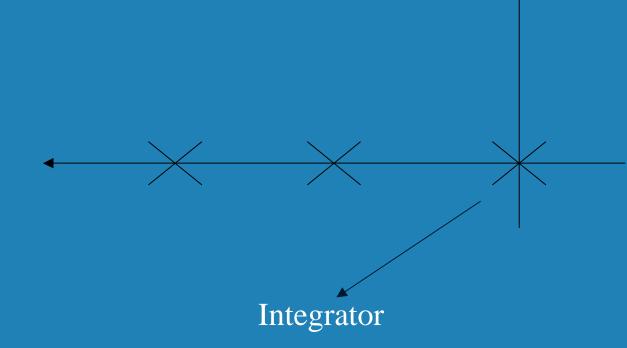
Control Block Diagram

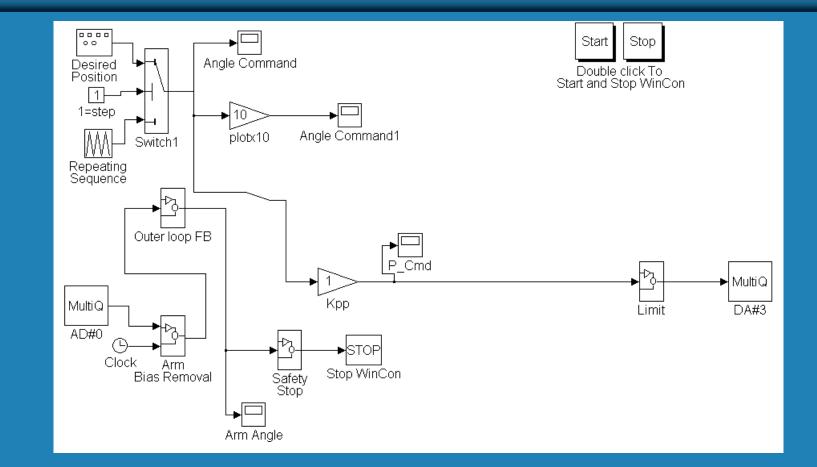

***** System Identification

* Help Menu

System Identification

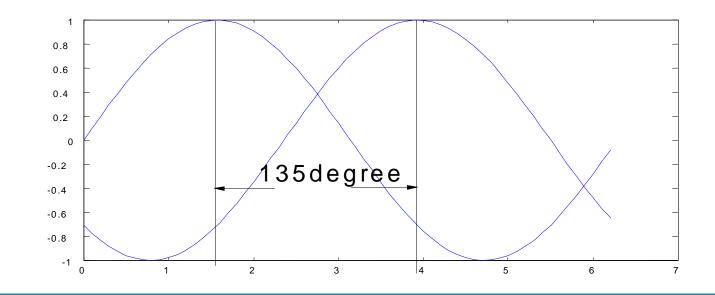
System * Level arm with light load **Objective:** * Find System Model from Theory ***** Derive S-Plane *** Find Plant Model**


Robot Arm System Block Diagram


Ra=2.6Ohms La = 0.18mH Gives a pole at 340Hz Kt=0.00767Nm/amp Kv=0.00767V/rad/sec Kg = 1/70 Power Amp pole at 60kHz

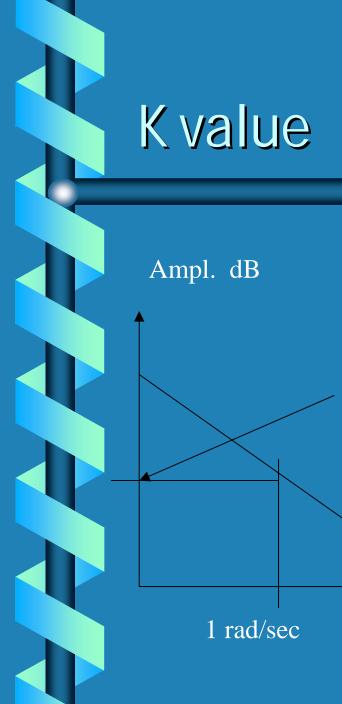
S-Plane of System

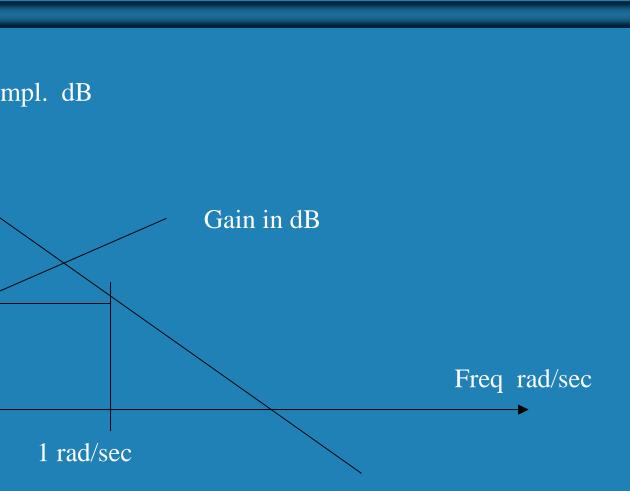
Open Loop WinCon


Time Delay Measurement Amplitude Input Time Delay Output

Time Delay

* 25ms counterclockwise
* 15ms clockwise
* Design worst case


Second Pole Search

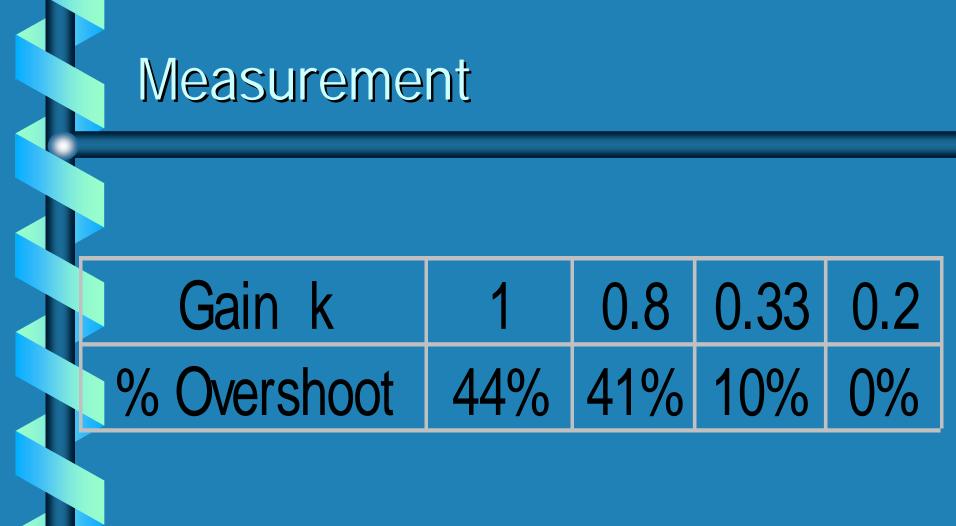

* At 2nd pole phase lag should be 135° * $135^\circ = -90^\circ - \arctan(\omega/pole) - (\omega^*Td^*180/\pi)$

Problem

* Td too big
* ω*Ts*180/π term =45 degree
135°=-90°-arctan(ω/pole)- (ω*Td*180/π)
* Pole not verified

Conclusion

 $Gp = \frac{Ke^{-std}}{S}$


With K=Vout/Vin=0.977 and td=25ms

Verifying Result

 Using Simulink to simulate plant
 %Overshoot of experiment did not agree with simulation

* Switch to 2nd order system

$$Gp = \frac{Ke^{-std}}{s(s / p + 1)}$$

Approaches

MatLab match
 2 unknowns pole and K
 try to match

try to match

Experimental finding gain K use MatLab to match up pole

Velocity Approach

Time revolutions at different voltages
Divide velocity by input voltages
Adjust to average K
MatLab to match pole

Voltage	Time/Revolution	Gain
4 Volts	12.5 sec	7.2
3 Volts	12.8 sec	9.375
2 Volts	13.0 sec	13.84

Results

Matlab Match	<i>Gp</i> =	6.9 * (s(s / 3	$e^{-s*0.025}$ 3.2+1)	
K Measurement	Gp = -		$2^{-s*0.025}$ 2+1)	-
Gain k	1	0.75	0.33	0.2
% Overshoot Experiment	44%	41%	10%	0%
% Övershoot Matlab	44%	36%	13%	3%
% Overshoot K-Measurement	43%	35%	15%	5%

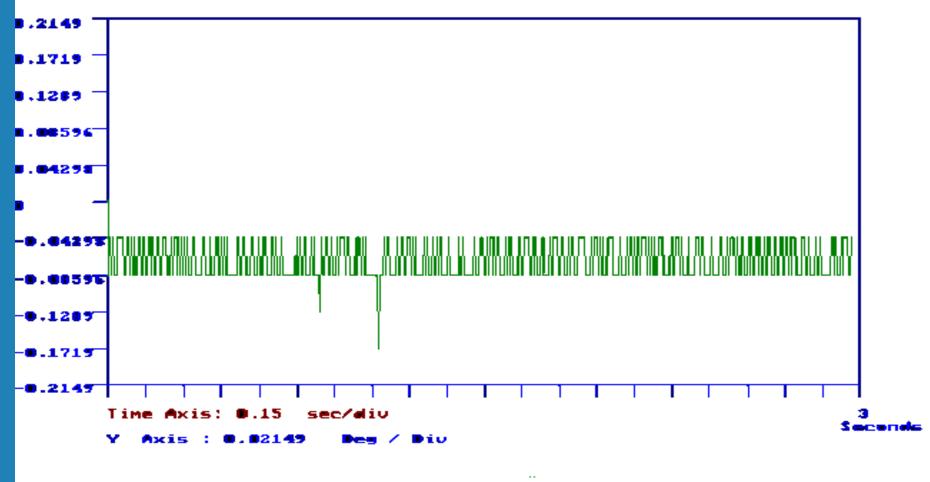
Help Menu

Some commands are not verified on main screen

Needed extra space
 Command line added to real time plots

Main Screen

HELP(H)


	X
_	\sim

No ocicent			
Auto 🔽 🛅 🖻	🔁 🖀 🗗 A		
REAL TIME DATA	SELECT ONE OF THE FOLLOWING:		
REAL TIME(sec) 104.5	[O]: Motor off	OFF	
FEEDBACK(V) -0.0		0.1000 -	
ANGLE –0.04	[k2]: Gain k2		
CMD 0.00		0.0000	
	[k4]: Gain k4	0.0000	
		0.000	
IS] SET POINT TYPE	[s]: Command set point	0.00	
Irl ALTERNATING STEP		100.00	
		200.00	
[a] FIXED CONTROLLER	[T]: Data buffer duration(Sec)	3.0	
[1/2] TYPE:	[f]: Lowpass filter cutoff(Hz)	20.0	
1 P	[i]: Input Step/Ramp frequency(Hz)		
	[V]: Plotting variable Angle		
	[G]: Graph the data buffer / Save o	n Disk	
	[R]: Realtime plot		
	[Q]: Quit program		
	- <u>-</u>		

Help Screen

💑 screen1 📃 🗆 🗙
Auto 💽 🖻 🛍 🚱 🗃 🗗 🗛
Main Screen Commands Main Screen and/or Real Time Plot Commands Change Controller Type(a) Takes You Back to Main Screen(x) Quit(q or Q) Motor On/Off(0)
Data Buffer Duration Sec(T) Toggle Set Points(e)_ Plotting Variable(V) Wave Frequency Hz(i)
Low Pass Filter Cutoff Hz(f) Switch Wave Forms(S)
Zero Present Measurments(z) Set or Command Point(s) Change Gain(k then 1-5)
Ramp Velocity(v) Sampling Frequency Hz(F) Real Time Plot(R)
Graph Data Buffer(G)
Back(x)

Real Time Plot

Te Quit Graph (X)

Revised Schedule

Subproject	Time in Weeks	Progress
System Identificatio	3	0.5 weeks left
Menu	1	Done
P-Controller Design and Testing	1	0.5 weeks left
Investigate & Implement Neural	2	Not Started
Networks with P-controller		
Velocity Algorithm	2	Not Started
Two Loop Design With Neural	1	Not Started
Networks		
Feed-Forward Control &	1	Not Started
Impementation in Neural Networks		
Digital Control Analysis	1	Not Started

The End