Implementation of Conventional and Neural Controllers Using Position and Velocity Feedback

By Christopher Spevacek & Manfred Meissner

Advisor Dr. Gary Dempsey

Contents

 Summary Previous Work Modes Of Operation Preliminary Design Work Preliminary Lab Work Equipment List Schedule

Summary

- Design and Compare Conventional and Neural Controllers for a Small Robot Arm
- Position and Velocity Feedback Design
 User Friendly Interface Design

Previous Work

Quanser Consulting

 Provided Software for Use with the Robot Arm, A/D, D/A Converters

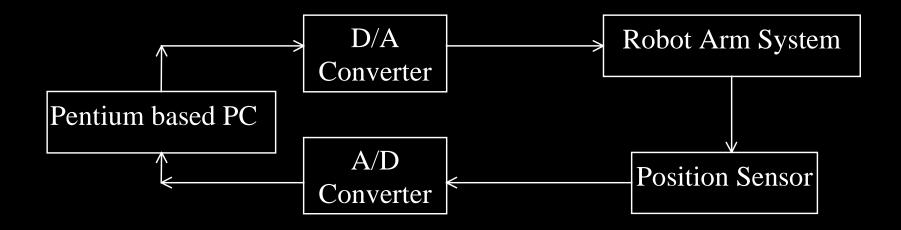
Dr. Dempsey

- Research on different Velocity Algorithms
- Neural Network Architecture

Modes of Operation

Default

- Computer Generates the Command Signal
- User Set the Final Position of the Robot Arm


Joystick

- Connects to A/D Channel
- Generates Command Signal by the Movement of the Joystick

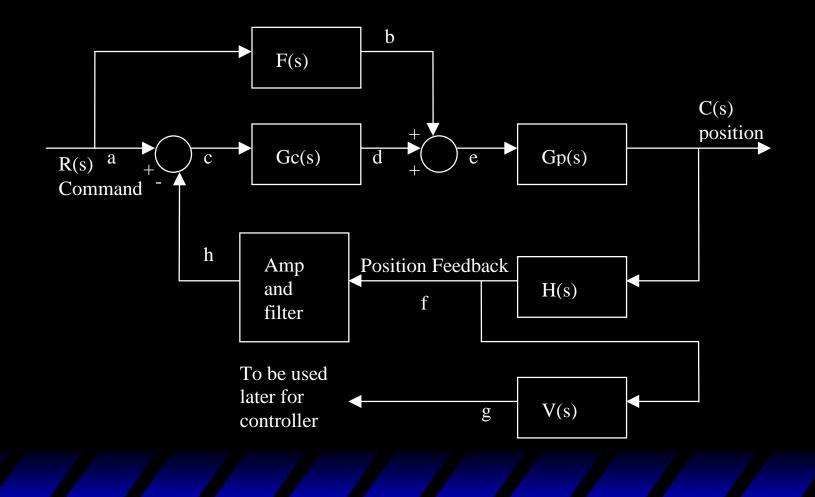
Preliminary Design Work

High Level Block Diagram
Control Block Diagram
Software
Velocity Algorithms
Neural Networks

High Level Block Diagram

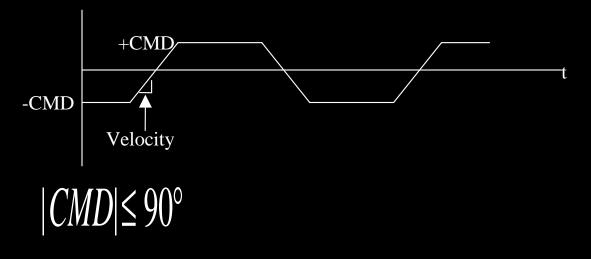
High Level Block Diagram

Pentium Based PC


- Generates Command Signal if Joystick is not Present
- Implementation of Controllers
- Generates Real-Time Graphs
- Display the User Interface

High Level Block Diagram

Robot Arm System


- Power Amplifier
- DC Motor Assembly
- Gear Trains
- Load
 - The Robot Arm

Control Block Diagram

Input And Outputs of System

A) R(s) is the Command Signal

 $VELOCITY_{MAX} = 45^{\circ}/sec$

Inputs and Outputs

- C(s) is the Position of the Robot Arm
 - Percent Overshoot(%O.S.) = 5%
 - Time To first Peak (tp) = 3s
 - Magnitude of Peak in Frequency Domain
 (Mp) = 1.32dB
 - Frequency of Peak In frequency Domain (wp)=170mHZ

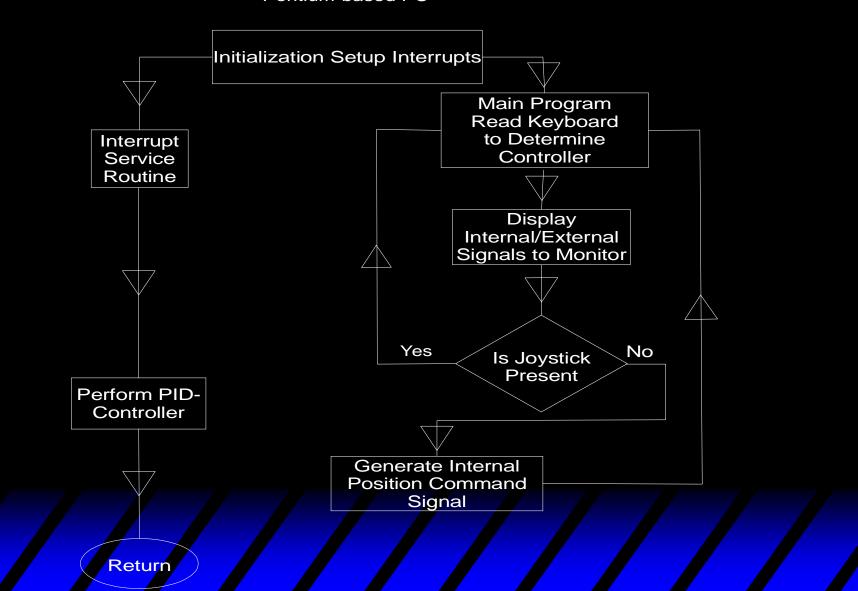
Inputs and Outputs

- Bandwidth Closed Loop (BW) = 290mHz
- Phase Margin (PM) = 50deg
- Gain Margin (GM) = 6dB
- Steady State Error = 2deg
- Output should be the same as input

- F(s)
 - Feed-Forward Compensator
 - Neural Network if Implemented
 - Implemented in Software
- Gc(s)
 - Plant Controller
 - A PID-type controller
 - Implemented in Software

- Plant or Robot Arm System
- Hardware
- ♦ H(s)
 - Position Sensor
 - Hardware

V(s)

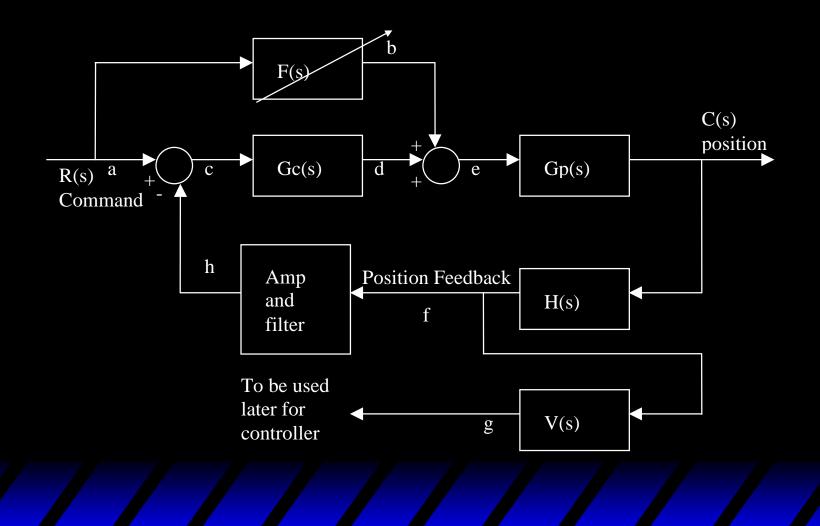

Algorithm used for Velocity Feedback
To Be Determined

Amp and Filter

Amplify signal
Filter out the noise

Software Flowchart Pentium-based PC

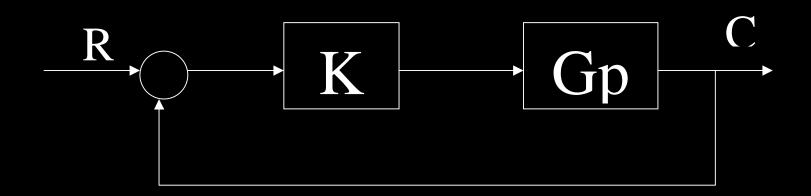
Initialization


- Initializes the Interrupts to be set at 200Hz
 Sampling Rate (5ms)
- Main Program
 - Calculate the Values for the Display
 - Check the Keyboard and Joystick
 - If Present Read Joystick and Generate the Command Signal

- Interrupt Service Routine and Performing of PID Controller
 - Send Signal form Calculated Values of Main Program and Interrupt Service Routine to the Robot Arm
 - Signals also Sent to the Monitor at User
 Specified Times

Velocity Algorithms

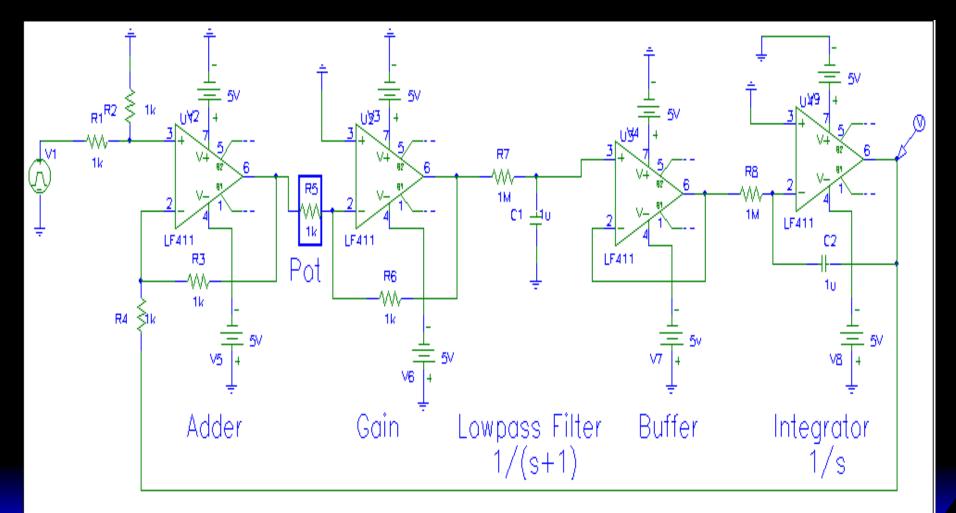
 Design S-Plane Lead Network use Tustin Method(Bilinear Transformation)
 Use Polynomial Curve Fit Algorithm to Calculate Velocity


Neural Network

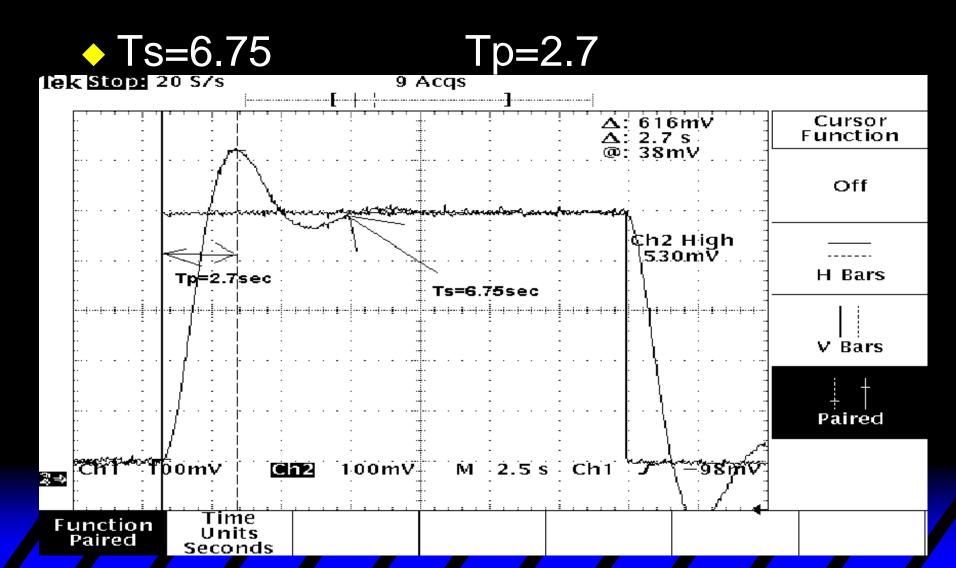
Preliminary Lab Work

- P Controller Design and Testing
 C-Code
 - Filter Design using Tustin Method
 - Filter Testing
 - Improvement of Display

P Controller Design


Calculation Results

For 0% OS k=0.25
 Ts=11.7sec Tp=Infinity


 For 5%OS k=0.525
 Ts=8.4sec Tp=6sec

 For 25%OS k=1.534
 Ts=6.78sec Tp=2.76sec

Circuitry Used

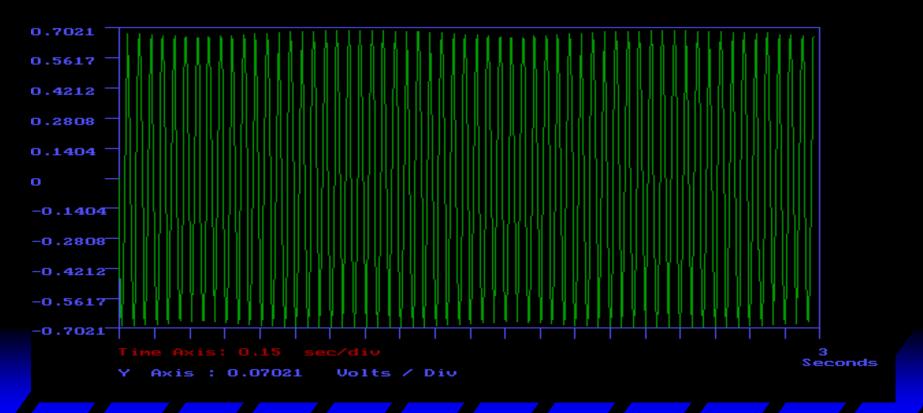
Measurement 25% OS

Calculation Vs. Measurement

- ♦ 0% Ts=11.7sec
- ◆ 5% Ts=8.4secTp=6sec
- 25% Ts=6.78sec
 Tp=2.76sec
 BW=290mHz
 fpeak=175mHz
 Mp=1.32 norm.

- ♦ 0% Ts=12.5sec
- ♦ 5% Ts=7.4sec
 - Tp=5.75sec
- 25% Ts=6.75sec
 Tp=2.7sec
 - BW=270mHz
 - fpeak=161.8mHz
 - Mp=1.354 norm.

C-Code Development


Design of a digital filter @ 20Hz cutoff
Changing Real-Time Display Mode

Filter Design

Using Tustin Method With T=fixed sampling time=0.005sec $S = \frac{2}{T} \frac{z-1}{z+1}$ Filter Transfer Function to Obtain G(s) = - $1 + \frac{s}{20 * 2\pi}$

Filter Output on PC Screen

Chose 1V@20Hz Input to see 3dB point

Changing Real Time Display

Auto Scaling on y-Axis was given
Problem: Plot off the Screen
Improvement: now it takes the last highest value and adjusts it only by approximately 20% up or down

Equipment List Hardware & Software

♦ 500MHz IBM compatible Pentium III PC Quansar Robot Arm System A/D & D/A converter card Amplifier Borland 4.5 C-Compiler Matlab 5.3 WinCom V2.0 Real-Time Workshop

Schedule Chris=C Manfred=M Dr.Dempsey=D

- 12 weeks available till Presentation at the Student Expo end of April
- System Identification
 C&M&D
 3Weeks
- Menu
 C&M
 1Week
- P-Controller Design&Testing
 C
 1Week
- Investigate&Implement Neural Network
 with P-Controller
 M&D
 1Week

Schedule

Chris=C Manfred=M Dr.Dempsey=D

 Velocity Algorithm 	С	1Week
 Two Loop Design 		
With Neural Networks	M&D	1Week
 Redesign with Rotary Encoder 	C&M	1Week
 Feed Forward Control & Implementation 		
in Neural Networks	C&M&D	1Week
 Digital Control Analysis 	C&M	2Weeks

Additional Work

 Presentation at Student Expo miss one Lab Period
 Expo Conference Report
 Presentation Board

The End

Design Equations 1

 $\frac{6005}{600} = e^{-\zeta \pi / \sqrt{1 - \zeta^2}}$ $W_n = \frac{1}{2\xi} \qquad W_n = \sqrt{k}$

Design Equations 2

 Vo/Vi= 1kΩ /Rpot=k => R=1000/k
 Transfer Function: 2nd order system C/R=wn^2/(s*s+2*zeta*wn+wn^2)= =k/(s*s+s+k)
 Ts=<2% from final value

Design Equations 3

Tustin or Bilinear z-Transformation
 s=ln(z)*1/T~(2/T)*{(z-1)/(z+1)}
 Truncating Laurent Series Expansion

Calculation for Circuitry

- Chose 1µF Capacitor for Integrator & Filter
 - \rightarrow R=1M Ω for Integrator and Filter
- Chosen 1 kΩ Resistors for Gain & Summer
 - $\rightarrow \text{Rpot=1000/Gain}$ $\rightarrow \text{Rpot=4 k}\Omega \qquad \text{for} \quad 0\%\text{OS}$ $\rightarrow \text{Rpot=1.905 k}\Omega \qquad \text{for} \quad 5\%\text{OS} \\ \rightarrow \text{Rpot=652 }\Omega \qquad \text{for} \quad 25\%\text{OS}$

Final C-code Function

 Output = 0.239*Input+ +0.239*Past Input+ +0.522*Past Output
 Past Input & Past Output had to be set zero to get started

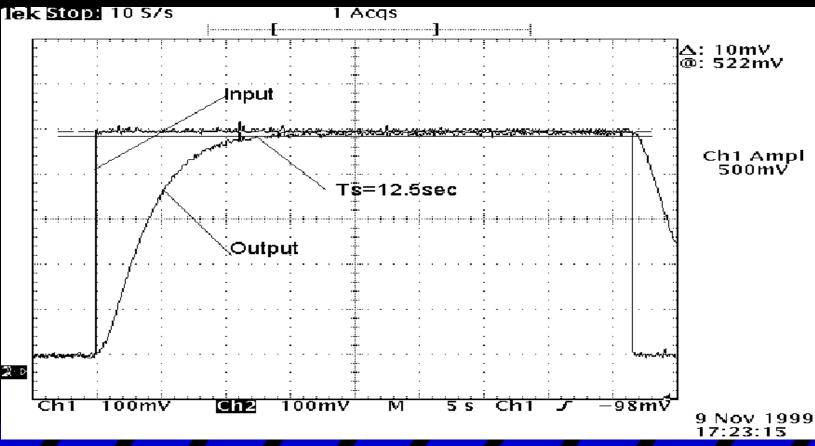
Keyboard

- Gives the User a Choice of Which Signals are to be Displayed and Controller type
- Command Signal Parameters
- Display
 - Will Show all Internal and External Signals
 Chosen by the User

- Joystick Check
 - If Present Joystick Position will be Read and Sent to the Interrupt Service Routine
 - If not the PC will Generate the Command Signal
- Generate Command Signal
 - This Option Occurs if the Joystick is not Present.
 - PC Performs the Calculations for the Command Signal

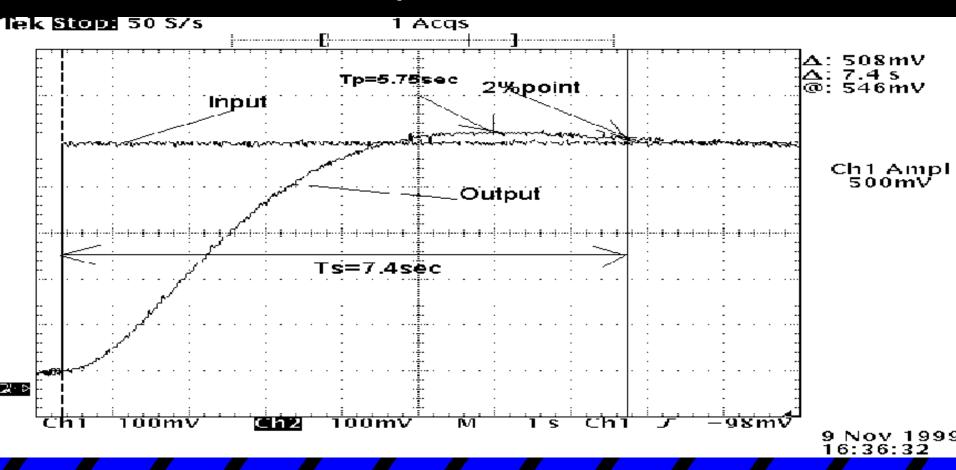
How Measurement was Obtained

 Input Square Wave Chosen at Least Double the Settling Time


 Potentiometer was Adjusted to Get %OS Wanted

Read Results from Scope

 Frequency Domain: Swept from 1mHz till Sine Wave to get BW(3dB) and Mp


Measurement 0% OS

Measurement 5% OS

◆ Ts=7.4 sec Tp=5.75sec

