Matrix-Vector Multiplier Chip

General Description:

The Matrix-Vector Multiplier Chip will multiply a 3-bit x 3-bit matrix with a 3-bit vector to produce a 6-bit output. This chip utilizes a cellular array of CMOS elements, designed for easy expandability and testability. Each input pin accepts standard CMOS voltage levels. The outputs are also standard CMOS levels. For ease of testing, a sequence generator has also been added, which is accessible in test mode.

Specifications:

Supply Voltage 5 V
Sink Current ?
Source Current ?
Power Dissipation. ?
Fan Out. ?
Propagation Delay. 10 cycles
Input Low Voltage $0-0.5 \mathrm{~V}$
Input High Voltage 4.5-5.0V
Output Low Voltage. $.0-0.5 \mathrm{~V}$
Output High Voltage 4.5-5.0V

Clock	1	40	Vdd
Mode	2	39	NC
NC	3	38	Y11
A1	4	37	Y10
A2	5	36	Y21
A3	6	35	Y20
NC	7	34	Y31
B1	8	33	Y30
B2	9	32	NC
B3	10	31	T1
NC	11	30	T2
C1	12	29	T3
C2	13	28	T4
C3	14	27	T5
NC	15	26	NC
X1	16	25	TC1
X2	17	24	TC2
X3	18	23	TC3
NC	19	22	TC4
Gnd	20	21	TC5

The clock pin is for a user-supplied clock input. Mode pin is 0 for normal operation and 1 for self-test operation. A1-3, B1-3, and C1-3 correspond to the inputs for the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ rows of the input matrix respectively. Pins X1X3 correspond to the input vector. Y11 and Y10 are the bits of the $1^{\text {st }}$ element of the output vector; likewise for Y21-Y20 and Y31-Y30. T1T5 are active only in test mode. They are the outputs of each processor cell and pins TC1-TC5 are the carry bits from the processor cells.

Sample Operation

Mathematical representation of the chip's function:

$$
\left[\begin{array}{ccc}
\mathrm{A} 1 & \mathrm{~A} 2 & \mathrm{~A} 3 \\
\mathrm{~B} 1 & \mathrm{~B} 2 & \mathrm{~B} 3 \\
\mathrm{C} 1 & \mathrm{C} 2 & \mathrm{C} 3
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} 1 \\
\mathrm{X} 2 \\
\mathrm{X} 3
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{Y} 11 & \mathrm{Y} 10 \\
\mathrm{Y} 21 & \mathrm{Y} 20 \\
\mathrm{Y} 31 & \mathrm{Y} 30
\end{array}\right]
$$

A full truth table would be too large to include, but a couple examples are given:

Example 1:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
01 \\
00 \\
01
\end{array}\right]
$$

Example 2:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
10 \\
00 \\
01
\end{array}\right]
$$

The truth table for these two examples would look like this:

A1	A2	A3	B1	B2	B3	C1	C2	C3	X1	X2	X3	Y11	Y10	Y21	Y20	Y31	Y30
1	1	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0	1
1	1	1	0	0	1	1	0	1	1	1	0	1	0	0	0	0	1

